
ESD-TR-90-146 '

AD- A236 813 ec,, Rpr
''~' ~ "'h'Technical Report

Iil ih i! lB 1 1111 UI909

Passive Equalization of Wideband
Communication Systems

M.L. Stevens

22 March 1991

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Department of the Air Force
under Contract F19628-90-C-0002.

Approved for public release; distribution is unlimited.

91-01770



This report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. The work was sponsored
by the Department of the Air Force under Contract F1628-90-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESD Public Affairs Office has reviewed this report, and
it is releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Hugh L. Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

* PASSIVE EQUALIZATION OF WIDEBAND
COMMUNICATION SYSTEMS

M.L. STE VENS &L~-
Group 63 .

TECHNCAL EPORT909

22~ -ARC 1991

LEXINGT22 MARCHCHU1991



ABSTRACT

This report describes a technique that produces high-performance passive equaliza-
tion networks for wideband communication systems. The relationship between the time-
domain and frequency-domain performance of a simple but important class of networks
is derived. The results of this analysis provide an estimate of the precision of equaliza-
tion required in the frequency domain, given the requirements for waveform quality in
the time domain. The effects of equalization magnitude and phase errors on a system
transfer function are 1escribed, and the optimum weighting function for the least-mean-
square-error mimimization of magnitude and phase errors is derived. An example is given
of the baseband equalization of a 220-Mbit/sec 4-ary FSK optical communication sys-
tem. High-quality equalization is achieved using this technique over a frequency range of
DC to approximately 1 GHz using simple, economical networks. Appendices are pro-
vided, describing the APL computer functions that were written to optimize and synthe-
size the filter hardware.
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1. INTRODUCTION

High-speed digital communication systems using lasers and fiber optics are now being developed
that operate at speeds of hundreds of megabits to gigabits per second. The frequency spectrum of the
baseband data in these systems is ultrawideband, covering many decades of frequency. The equalization
of such systems to eliminate intersymbol interference (ISI) becomes a challenging problem when the
equalizer must operate from DC to several hundred megahertz or several gigahertz. At these speeds,
digital filter technology is not yet practical. Predistortion using feedback is possible in theory, but the
large loop bandwidths and short loop delays that are required at these speeds make this approach imprac-
tical. At the present time, passive equalization is the only approach that appears viable for very wideband
systems.

This report describes a design and optimization technique that was developed to create passive
networks that perform baseband equalization of a coherent optical communication system utilizing 4 -ary
FSK modulation at 220 Mbits/sec. The transmitter uses Hitachi channel-substrate-planar (CSP), semicon-
ductor diode lasers that are directly frequency modulated by current injection. The lasers have the typical
FM transfer characteristic shown in Figure 1. This equalization problem is particularly difficult because
the curve in Figure 1 does not match any simple pole-zero response, and the frequency band of interest
stretches from DC to beyond 1 GHz. To achieve the desired system performance goals, this transfer
characteristic was 'equalized to within a few tenths of a decibel in magnitude and a few degrees in phase
over many decades of frequency. Keeping the filters simple and rugged in design was desirable, so that
the system could be qualified for space applications. The transmitter contains four lasers, each having a
unique FM characteristic that requires its own equalizer design. An approach was needed that would
result in consistent high-quality equalization for each diode.
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Figure 1. Laser FM transfer characteristic.



The optimization procedure makes use of both the magnitude and phase of a transfer 1, action,
where the optimum weighting function for the least-mean-square-error minimization of magnitude and
phase has been derived. The optimization procedure operates on the pole and zero values of a transfer
function rather than network element values, resulting in a very efficient computer algorithm with wide
applications. The optimum weighting function for the minimization of magnitude and phase errors is also
applicable to other problems such as image rejection mixer design and adaptive antenna nulling.

A useful relationship is derived between the frequency-domain and time-domain performance of a
simple class of networks in Section 2. With the results of this section, the maximum passband ripple
requirements and bandwidth of an equalized system can be estimated, given the peak overshoot or
undershoot that is acceptable in the time domain. Section 3 derives the optimum weighting function for
the minimization of magnitude and phase errors. Section 4 uses the results obtained in Sections 2 and 3
to form a strategy for the optimization of a passive equalizer. Section 5 describes in detail the equaliza-
tion of a 220-Mbit/sec 4-ary FSK semiconductor diode laser transmitter. Following the summary and
conclusions in Section 6, there are two appendices containing the step-by-step optimization procedure
and a listing of APL computer functions used in the optimization.
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2. A RELATIONSHIP BETWEEN THE TIME-DOMAIN AND FREQUENCY-
DOMAIN PERFORMANCE OF A SIMPLE CLASS OF NETWORKS

A performance description of a digital system is most easily given in the time domain. It is a fairly
simple matter to specify waveform rise time, overshoot, undershoot, and ringing and relate these numbers to
system performance. An FSK system, for instance, may switch between several frequencies. The transition
time is important because it takes away from the time available to integrate the symbol energy in the presence
of noise. The receiver may use a matched filter detection system that does the integration of symbol energy.
Any overshoot, undershoot, oi ringing may cause the tone to wander out of the matched filter bandwidth.
Excessive overshoot or undershoot may even cause the tone to appear in another filter, resulting in intersymbol
interference (ISI).

The ability to make precise measurements in the time domain is somewhat limited compared with
measurements made in the frequency domain. Time-domain measurements are generally done by oscillo-
scope. Wideband systems require a very fast oscilloscope that is also susceptible to the noise in the
system. In addition, an oscilloscope is a linear device with limited resolution over wide dynamic ranges.
It is difficult, for instance, to characterize accurately a fast step that occurs more than 30 dB below the
peak of a slowly rising waveform using an oscilloscope. This precise characterization is required to
quantify the FM step response of a CSP semiconductor diode laser. In the frequency domain, however,
the difference in gain of more than 30 dB between low and high frequencies is easily measurable, the
noise bandwidth of the measurement can be narrow, and at the same time measurements over multiple
decades of frequencies are easily handled, as shown by the typical measured response in Figure 1.

Unfortunately, the frequency-domain information does not readily reveal what one wants to know,
which is how the system will perform in the time domain. A simple way is required to relate the measure-
ments easily made in the frequency domain to the performance that is needed in the time domain. In other
words, given the required time-domain performance, the limits of the frequency response of the overall
system must be determined.

For the simple case of a system with a single pole and zero, a simple relationship exists between the
time-domain and frequency-domain performance.

The time-domain response of a system is given by

. ,(t) = f(t) *h(t) ,(2.1)

where fl(t) = input waveform,

f 2(t) = output waveform,

h(t) = system impulse response, and

* = convolution integral.

For a linear system, superposition allows h(t) to be separated into ideal hit) and nonideal hE(t) parts.

f2(,) : I(t) * (h,(t)+hE(t)) (2.2)

3



Let f 2(t) be composed of the ideal output waveform f, (t) (input waveform = output waveform) and
an error term e2(t).

f 2 (t) =f, (t)+ e 2 (t)=A (t) *(h, (t) +h E(t)) .(2.3)

Equating the ideal and error terms results in

fA(t) =f, (t) *h, (t) and (2.4)

e 2 (t) =f, (t)* h E(t) .(2.5)

The ideal system response h,(t) is the unit impulse 6(t). Let fi(t) be the unit step u(t). Taking the
Laplace transform of Equation (2.5),

2?e 2 (t) = u(t)- 2h E(t) .(2.6)

1
E 2 (s)= - .H E(S) (2.7)

S

HI(s)= sE 2 (s) .(2.8)

Let e2(t) take the simple forms shown in Figure 2.

e 2 (t) =±aeato or ±a(i-e-a't) .(2.9)

E2s a I or ± ay Is- a) (2.10)

HE(s)=+ar or ± 19. (2.11)
Es+a S+a

The overall transfer function HT(s) includes the ideal transfer function H1  I and the nonideal HE(S).

HT(s)=l±a sa or l±Cra (2.12)

The difference between the overall transfer function and the ideal transfer function in decibels is
given by

2 0 log HT (s) = 2 0 log s( ± a) +a (2.13)
H, (s) s+a

or

2 0 log HT (s) = 2 0 log S+ a(l ±a) (2.14)
H, (S) s+a

4
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Figure 2. Some simple forms for e2(t).
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The peak error in the frequency response in either case is

ERRORdB = 20Olog(1 ± a) (2.15)

where a is the fractional error in the time-domain response (i.e., a waveform with 10 percent overshoot
hasoa =0.1).

Figure 3 plots the magnitude of ripple in the frequency response of a system having one of the
characteristics shown in Figure 2 as a function of the fractional error in the time domain a.

The bandwidth requirements in the frequency domain can also be determined from the time-domain
specifications. The time-domain specifications of a system will generally have a maximum acceptable
rise time. Any overshoot or undershoot that has damped out (to within an acceptable error) during the
rise time will not detract from the system performance. In this case the system response a can deviate from

the required passband response, a0, according to

aTmin
+o"=±+a0e , (2.16)

. ............ -- -* .........: ...: ....6.
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where Tmin is the minimum time of interest in the system. The ripple as a function of aT is plotted in

Figure 4 for several values of o0.Figure 4 can be used to determine the minimum upper cutoff frequency
of an equalization network. The radian frequency is given by a where the maximum tolerable error a0 is
given and the minimum time of interest T is known.

The low-frequency response of an equalization network is determined by

1
+ = 01-Ge-aTma ' (2.17)

where Tmax is the maximum time period of interest in the system. The ripple in magnitude response as a
function of aT is plotted in Figure 5 for the low-frequency case.

The preceding discussion provides an important band-limiting of the problem that allows the equal-
ization of a system to be optimized only over the important frequency band. Outside this band, the
system may be allowed to deviate from the ideal passband response according to Figure 4 at high
frequencies and according to Figure 5 at low frequencies.
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3. THE EFFECTS OF MAGNITUDE AND PHASE ERRORS ON A SYSTEM
TRANSFER FUNCTION

A simple model of an equalized communication system is shown in Figure 6. SE is the complex
transfer function of the equalization filter in the s-plane, and SL is the complex transfer function of the
communication path in the s-plane, which could represent, for example, the model of a long cable,
microwave, or optical link.

SIGNAL EQUALIZATION COMMUNICATION OUTPUT

SOURCE 0 FILTER PATH
SE S L

Figure 6. A communication system model.

The overall system transfer function is

Hsystem ' SE .SL  (3.1)

The ideal transfer function is

-system "- 1 (3.2)

in which case, the output will be identical to the input with no waveform distortion.

SL= SL .(cosO+jsinO) and (3.3)

SE= ISE .(cos(-0+ q)+jsin(-0+ (p)) , (3.4)

where ISLI is the magnitude of SL and 0 is the phase angle. Likewise, ISEI is the magnitude of SE and
(-0+ (p) is the phase angle. When (p= 0, SE has the desired ideal phase of -0; q' therefore represents a phase
error term.

The overall transfer function now becomes

Hsystem =SLSE=SL.S E I .(cosop+ jsin p) (3.5)

The error in the system transfer function is given by

ERROR = SL . - (3.6)

9



The magnitude of the squared error is given by

IERROR12 =((sL SE -1)(sL sE) -1) (3.7)

where (SL • SE)* is a complex conjugate.

IERROR12 = Is,. 2 _SE 1 -21SLI.scosE + 1 1 (3.8)

In the ideal case ISEI = ISLI and (p =0. To study the effects of errors in ISEI and op, let

ISE=- I + '(3.9)
JSJI

where -1 < a <o, and a is the fractional error in magnitude.

JERROR12 ISL12 .1+2a+a2 21S L Ill+oi.cos9ERRSL2 SL (3.10)

JERRORI2 =l + 2a+ a2I1- 21 + oj. cos 9 + 1 (3.11)

Let IERRORI2 = e and solve for a.

a 2 + a(2(l- cos ()) + 2(1- cosq9)- =0 (3.12)

a Cos ()+ ((1 _ C )2 - 2(l COS 9) + E)2 (3.13)

If the value of e is known or if e represents a limiting value of system error, then the values of 9
and ar that produce the total system error can now be found. Equation (3.13) shows that the possible
values of (p are limited to those values that result in real values of a.

(1 _cos () 2 - 2(1- cos o) +e 20 (3.14)

or

e> (I -cos2o) (3.15)

2

And finally,

cos21 > I- 2E (3.16)

The power series expansion of cos 21p is given by

cos21p = I1- 492+ 16 1p4  646 + (3.17)
2! 4! 6!

10



For small values of 4p (4p < 0.5 rad or 290) a good approximation of cos 21p is given by the first two terms

cos2q = 1-2q2 2  (3.18)

Combining Equations (3.16) and (3.18), it is seen that

9p2 < C (3.19)

or

IKradians < IERRORI (3.20)

From Equation (3.13), by setting ip = 0, then

a = E112  (3.21)

Letting I1i take values from 0 to IERRORI it is seen that

oa < IERRORI (3.22)

Equations (3.20) and (3.22) show that magnitude and phase errors contribute equally to the system
error for phase errors less than approximately 0.5 rad. Therefore, system performance should be opti-
mized by minimizing a and 4 using equal weighting (where a is the dimensionless fractional error in
magnitude and (p is the phase error in radians). Equation (3.13) has been plotted in Figure 7 over the
allowed range of 4p and positive values of a (negative values greater than or equal to -1 are also of inter-
est) for several values of IERRORdBI.

100 161a-7

SYSTEM ERROR (dB)

-10

015
I.I 10"' -20

u -25

Sio73 -5

103  10.2 10-1 100

PHASE ERROR I 01 (Radians)

Figure 7. Magnitude and phase contributions to system error.
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It is more convenient and generally more effective to optimize the ratio of actual equalization
magnitude to ideal equalization magnitude expressed in decibels. This is given by 201og, 011 + al, which
is the same as the magnitude error given in Equation (2.15), and plotted in Figure 3. Table 1 compares
the values of loi, I1 + al, 201ogl 0 11 + al, and T in radians and degrees for several values of system error.

TABLE 1

Magnitude and Phase Errors for Several Values of System Error

IERRORdBI (c)1/2  a I1 + al 201og1011 + al 9Wd

-10 0.316 0.316 1.316 2.39 0.316 18.1
-20 0.1 0.1 1.1 0.83 0.1 5.7

-30 0.0316 0.0316 1.0316 0.27 0.0316 1.81

-40 0.01 0.01 1.01 0.086 0.01 0.57

-50 0.00316 0.00316 1.00316 0.027 0.00316 0.18

Table 1 shows that the ratio of magnitude error in decibels and phase error in degrees is approxi-
mately 6.7 and is essentially constant for system errors less than -20 dB. This ratio is the appropriate
weighting factor for the determination of overall system error that results from both magnitude and phase
errors. An appropriate function for the least-mean-square-error minimization of magnitude error in deci-
bels and phase error in degrees is given by

S2 )2 +2

W1 (WMdB -Mde) + 2 (oe 9 -01 , (3.23)

where W1 + W2 = I and W11W2 = 6.72 or

W i = 0.978,

W2 = 0.022,

and MdB = equalizer magnitude in decibels, MdB = ideal magnitude in decibels, Odeg = equalizer phase in
degrees, and f-deg = ideal phase in degrees.

Equation (3.12) can be rewritten in the following form:

0 2 + 4crsin 2 (P + 4sin2 V = E (3.24)

2 2

As q7/2 becomes small, sin(q'2) may be approximated by 4p/2 and Equation (3.24) simplifies to

Or2 + CP2 + ()2 = E (3.25)

12



For or and (p << 1, Equation (3.25) is approximated by

E= C 2 + (P2  (3.26)

When both magnitude error and phase error contribute equally to the system error, the magnitude error or
and phase error in radians (p must be less than or equal to (e/2) 112. A chart showing the limits on magni-
tude error in decibels (expressed as 20logioll + o1) and phase error in degrees as a function of system
error in decibels is plotted in Figure 8.

Figures 3, 4, 5, and 8 can be used to estimate the precision necessary to equalize a system transfer
function and achieve a required performance in the time domain. Magnitude and phase have been shown to
be equally important in contributing to system error. The appropriate weighting factors for minimizing
magnitude and phase errors in a system have been derived and can now be used to optimize the design of
equalization networks.
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4. OPTIMIZATION STRATEGY FOR WIDEBAND EQUALIZERS

The results in Sections 2 and 3 may now be used to estimate the precision necessary to equalize a
system where the time-domain requirements are known. Alternatively, knowing the measured amplitude
and phase response of a system versus frequency, we can place limits on the expected performance in the
time domain.

The first steps in an optimization strategy are to determine the initial performance of a system and
the corrections necessary to achieve the desired performance. For most systems this would involve
measuring or calculating the signal spectrum and determining the frequency band of interest, taking into
account both the signal spectrum and the rise and fall time requirements. The initial system performance
is then determined by measuring the magnitude and phase response versus frequency over the band of
interest. Additional measurements, if possible, up to a decade above and below the band of interest will
also prove helpful in determining the appropriate out-of-band filter characteristics.

The initial performance could also be measured in the time domain, and this data could then be
transformed to the frequency domain by Fourier transform. Because the desired end result is a quality
waveform in the time domain, this approach seems more direct than using frequency-domain data.
Several problems with this approach exist. First, an equalizer filter will be synthesized in the frequency
domain using standard filter synthesis techniques, which forces the problem into the frequency domain
whether we start there or not. More importantly, the time domain is a linear domain both in terms of
amplitude and time. To characterize a very wideband system adequately requires hundreds or thousands
of times as many data points in the time domain using linear sampling than in the frequency domain
using logarithmic sampling. As an example, the FM transfer characteristic of a laser was well character-
ized with 99 logarithmically spaced measurements of magnitude and phase over a frequency band of
10 Hz to 1300 MHz. The same characterization in the time domain would require 130 million data points
linearly spaced in the time domain.

From a practical point of view, computer time becomes expensive, and the measured data is gener-
ally more noisy and less accurate in the time domain, because of the measurement bandwidths required,
than data taken in the frequency domain.

After determining the initial system response, the ideal correction may be calculated that is the
inverse of the system response. A system that has a low-pass characteristic will have an ideal correction
that is a high-pass characteristic. The ideal correction multiplied by the system response should yield an
overall response that is flat in magnitude and zero phase for all frequencies. Unfortunately, the ideal
correction will probably violate natural laws, as far as being realizable. The ideal correction for a system
with a low-pass characteristic requires a filter that has increasing response with increasing frequency. A
realizable filter must approach a transfer function of I at high frequencies and have a decreasing response
with decreasing frequency below some cutoff frequency. The ideal correction must therefore be modified
to a response that is physically realizable. Figures 4 and 5 can be used to determine the appropriate high
and low cutoff frequencies for the design.

15



Before the ideal correction is modified, consider some possible network topologies that could be
built to provide the necessary correction over the frequency band of interest. Knowing beforehand the
characteristics that the final transfer function must take, the ideal correction can be modified to take on
these characteristics at frequencies outside the band of interest. For example, the high-frequency response
of a high-pass, minimum-phase filter should approach 0 dB and 0' at high frequencies.

The modified correction now becomes the prototype equalizer characteristic. Modem computer
technology, using inverse fast Fourier transform (IFFT) algorithms, can be used to calculate the overall
time-domain response of the hypothetical equalizer cascaded with the system to determine whether one is
on the right track. The time-domain description of a signal waveform can be transformed using fast
Fourier transform (FFT) to the frequency domain, where it is multiplied by the calculated overall system
response. The result is then transformed back into the time domain using IFFT. The calculated response
of the system in the time domain should compare closely with the signal waveform unless something
important was lost in the process of modifying the ideal correction. The modification of the ideal correc-
tion can be revised if the calculated time-domain response is unacceptable. The sizes of the FF1 and
IFFT are determined by the characteristics of the excitation waveform, which can be restricted to provide
adequate resolution while maintaining a reasonably sized array of data to transform. Although the system
was not measured at the few thousand frequency points that might be required for the IFFT, these points
can be accurately interpolated from the logarithmically spaced data points by most modem network
analysis programs.

Once the prototype equalizer response has been determined, a first guess of the pole and zero
locations of the transfer function can be made. This estimate can be accomplished by plotting the
prototype response in Bode plot form and then drawing an asymptotic approximation using the standard
rules for drawing Bode plots. A good estimate of the number of poles and zeros that will be required may
be obtained at this point by qualitatively comparing the prototype response with the various asymptotic
approximations of different order. Most systems will have a response that is exactly modeled by a
particular number of poles and zeros. Fewer or more poles or zeros will not work as well and may even
cause an optimization routine to diverge. Other systems cannot be exactly modeled by a finite number of
poles and zeros. The optimum number in this case is determined experimentally from the characteristics
of the data itself and the amount of noise in the measurement. A system with this characteristic is
described in the following section.

If accuracies of a few decibels and tens of degrees are adequate, then the Bode approximation may
be sufficient, and the filter may be synthesized from the resulting transfer function using standard synthe-
sis techniques. Most systems will require far better accuracies measured in tenths of decibels and a few
degrees. The majority of problems will then require an optimization of the equalizer transfer function to
minimize the mean-square-error over the band of interest.

An effective optimization algorithm is the Newton-Raphson algorithm for solving systems of n equa-
tions [I1.

x(j +1) = x(j)- [J(x(j))]- I x f(x(j)) (4.1)
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where x(i) is the ith iteration of x, J(x(j)) is the Jacobian matrix of f(x) evaluated at x =x(j), andf is the
function to be minimized. The appropriate function for the least-mean-square minimization of magnitude
and phase errors is given by Equation (3.23).

In general, Equation (4. 1) may be difficult to evaluate directly because of the need to calculate all of
the partial derivatives in J and then form the matrix inverse. Iff has simple derivatives, however, this
operation can easily be performed. This is indeed the case if the problem can be limited to transfer
functions containing simple real axis poles and zeros. Reducing many complex equalization problems to
this form may be possible by adding a filter to the unequalized system that reduces the overall transfer
function to a slope of less than 6 dB per octave. Then a final filter can be optimized with alternating
poles and zeros that will compensate for the remaining error in the transfer function.

MdB in Equation (3.23) will then take the form
N 02 +

MdB = lOgl 1 0 )2 + (4.2)
n=1 P1n

where z1, z2, Z3, ... and P1, P2, P3' ... are simple real axis zeros and poles.

edeg in Equation (3.23) will take the form

180F N- -_ N n)
Odeg =  ta tan-1 (4.3)

Ln=l Zn n=1l P

The partial derivatives of Equation (3.23) are given by

dE2  dM dxdo =l4(-Me x +2WOegOeg (4.4)
n n n

where xn is a pole or zero in the transfer function. The derivatives of MdB and Odeg for poles and zeros
are

dMdB = 10 2 Z 45

dz en' 10 o)2 +Z2

n n

dMdB 10 2p(4.6)

dpn inlO o2 +p 2

Pn1
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dodeg = 180 o)

dz ir )2 +z2
nn

dodeg 180 (
2-2 (4.8)

dp n ir (o + pi

Equation (4.4) must be solved for each pole and each zero at every frequency point of interest. A
solution is possible if the number of frequency points equals the sum of the poles and zeros in the transfer
function. This problem would lead to an exact solution at just those frequencies, whereas the transfer function
may deviate markedly from the ideal correction at frequencies between these points. For this reason, the
optimization will be more accurate if the problem is overspecified, with more equations than there are
unknowns, and a best-fit compromise is found for all the solutions. The APL computer language is ideally
suited to solve problems of this type with primitive functions that operate on n-dimensional arrays of data.
Appendix B contains a listing of APL functions that were written to solve this problem.

If the problem is overspecified, there is a high probability that local minima may exist and that the
global minimum may not be zero. In this situation, the Newton-Raphson algorithm will not converge. As
the solution approaches a local or global minimum (which is nonzero), the derivatives will all approach
zero, but the step computed for each unknown will become very large. To prevent the optimization from
diverging, a scalar multiplier may be included in Equation (4.1) that has a value less than or equal to 1.

x(j + 1) = x(j) - k[J(x(j))] x f(x(j)) (4.9)

At the start of a minimization, k is set to 1, allowing the algorithm to approach a minimum with maximum
speed. As soon as the solution begins to diverge, k is successively reduced in value to 1/2, 1/4, 1/8, ... until
convergence is again established. The optimization quits when either the error becomes zero (very unlikely)
or the change in every pole and zero is less than 0.01 percent (or some other arbitrary limit).

Once the optimization has been completed, a filter can be synthesized from the resulting transfer
function. FF1 and IFFT can be used to calculate the time-domain performance of the equalized system.

An optimization strategy has been described that will be used in the following section to design
equalizers for a 220-Mbit/sec FSK coherent optical communication system.
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5. PASSIVE EQUALIZER DESIGN FOR A 220-MBIT/SEC 4-ARY FSK
OPTICAL TRANSMITTER

A simplified block diagram of an FSK optical transmitter is shown in Figure 9. The modulator
produces an m-ary amplitude-shift-keyed (ASK) current waveform that is superimposed on the DC bias
current of the laser. The laser behaves as a voltage-controlled oscillator (VCO) (actually current-controlled)
and converts the ASK input to frequency-shift-keyed (FSK) modulation on the laser carrier.

16618-9

ASK FSK

SOURCE MODULATOR E0 \,V -- o

vco
(Laser)

(c(t) = hL(t) *Im(t)

Figure 9. Laser diode FSK trr.? ,er.

The unequalized FM transfer characteristic of a typical Hitachi CSP semiconductor diode laser is
shown in Figure 10. The transfer function has been shown to follow a lI(s)112 dependence [2] that cannot
be exactly modeled by a finite number of poles and zeros. Th,; equalizer design task is therefore to find
the minimum number of poles and zeros and their values, which will approximate the inverse of the laser
transfer function to the desired accuracy. The desired accuracy is specified only in the time domain and
consists of the goal to maintain the FSK output of the laser to within 5 MHz over the duration of a long
string of identical symbols. The step size between nonidentical symbols is n x 220 MHz, where n = 1, 2,
or 3, depending on the actual data sequence.

The allowed variation in frequency represents a a value of 0.023. Figure 3 gives a corresponding
passband ripple value of 0.195 dB. Because phase and magnitude errors both contribute to system error,
the equalization precision required to meet the stated goal, from Figure 7, is less than 0.15 dB peak ripple
in the magnitude response and 10 deviation from linear phase.

The system passband is determined from the rise-time specification of a 0.5-nsec maximum. The
magnitude response of the equalized system can be allowed to increase by 3 dB at an upper cutoff
frequency above aT = 3 for a c0 value of 0.023, resulting in an upper cutoff frequency of 6 x l09 rad/sec
or 955 MHz. In this particular case, the upper cutoff frequency can be lowered considerably because of
the natural compatibility of the high-frequency response characteristics of the laser and the equalizer
filter, which both approach a flat response above 100 to 300 MHz. For this reason, no benefit was gained
by optimizing the equalization at frequencies above this point.
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Figure 10. Laser FM response: (a) laser magnitude and (b) laser phase.

The lower cutoff must accommodate the longest string of identical symbols. The system will be
tested with a 215_ 1 pseudorandom sequence containing a maximum of 16 identical symbols. The lowest
symbol rate is 13.75 Msymbols/sec, resulting in a Tmin of 1.16 lis. A 3-dB variation in magnitude re-
sponse is allowed at frequencies below aT = 0.06 for a ao value of 0.023. This value of aT results in a
lower cutoff below 51.5 krad/sec or 8.2 kHz. The receiver has a frequency tracking loop that tracks out
frequency modulation components below 10 kHz, and for this reason, the transmitter equalization was
extended only to 10 kHz so that both the transmitter and receiver would have compatible lower limits.

At the outset it was apparent that equalizing the system to within 0.15 dB and 10 from 10 kHz to
300 MHz was probably beyond the current state of the art in laser FM response measurements, primarily
because of phase and intensity noise on the laser output. The goal was then to make a "best effort" based
on the limited accuracy of the system characterization. At the present time, the accuracy of equalization
appears to be limited by noise in the measurement of the FM characteristic of the lasers to approximately
± I dB, which could result in as much as a 25-MHz deviation in the laser output frequency. In practice,
however, equalization to better than one-half of this value has been achieved in some cases.

20



5.1 DESIGN PROCEDURE

A filter prototype is created from the measured magnitude and phase of the laser FM transfer
characteristic shown in Figure 10. The magnitude response of the filter prototype is created from the
magnitude of the measured FM characteristic in decibels by multiplying by -1 and normalizing to 0 dB at
the peak of the inverted response. If the laser shows a rise in the response at very high frequencies, the
prototype response is forced to 0 dB at frequencies above the peak, as shown in Figure 11 (a). Also, if the
laser shows a sloping response above 100 to 300 MHz, the data is altered to a flat 0-dB response at these
frequencies.
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Figure I1. Modified ideal correction filter response: (a) filter magnitude and (b) filter phase.
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The lasers have a low-frequency FM response that is 1800 out-of-phase with the driving waveform,
which means that the frequency of the laser goes down as the current through the junction goes up.
Therefore, the phase response of the prototype is subtracted from 1800 to produce a minimum-phase-type
response for the equalizer that tends to 00 at DC and high frequencies, as shown in Figure 11 (b). The
relaxation oscillation frequency of the laser, which occurs at approximately 8 GHz, begins to affect the
phase response above 100 MHz. This part of the response was found to have little effect on the computed
time response and therefore was not included in the filter prototype. This response would have an
important effect on higher data-rate systems. The phase response of the prototype is forced to zero at
frequencies above approximately 200 MHz by extending the slope of the phase curve from the value at
approximately 30 MHz until it reaches 00 at approximately 200 MHz, as shown in Figure 11 (b).

A further improvement was made by substituting into the prototype high-frequency phase response
the values calculated from

180 -1f
deg = 45 - - tan - (5.1)2tr f0  '

where fo was chosen to produce the best match to the original prototype phase response. Equation (5.1)
approximates the phase response of a network with a (s)0.5 response having an overall phase shift of 450,
rather than the usual 900 and a slope one-half of the usual value. The calculated high-frequency tail was
substituted into the prototype response, resulting in a more natural phase characteristic at high frequencies.

At this point, the response of the prototype filter, cascaded with the laser, excited by a I-MHz
square wave, was computed using a 2048-point IFFT. The result should be a high-quality I-MHz square
wave with very minimal distortion; this was verified, as shown in Figure 12. If this is not the case, then
either too much of the high-frequency response of the laser was discarded when the prototype filter was
created or the laser may have a peculiar response that cannot be well equalized with simple minimum-
phase networks. The IFFT becomes a powerful tool to determine what parts of the frequency spectrum
are critical to the time-domain performance.

Once the prototype filter has been created, the remaining design problem is to approximate as
closely as practical the magnitude and phase response of the prototype filter by determining the pole and
zero locations of the transfer function. Initial guesses of the pole-zero locations are determined graphi-
cally using a Bode plot. Initial guesses for two-, three-, and four-pole filters were made considering only
the prototype response between frequencies of 10 kHz and 1 GHz. Flattening the frequency response
above 100 to 300 MHz in the prototype filter and excluding the response below 10 kHz in the optimiza-
tion forced the poles and zeros into the four most important decades of frequency. This effect reduced the
number of poles and zeros required for a given accuracy of performance and therefore reduced the
complexity of the equalizer. The initial pole-zero guesses were chosen to yield pole and zero locations
that are all real and alternating with a zero located closest to zero frequency. The resulting transfer
function is then realized by a simple RC high-pass filter structure.
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Figure 12. Calculated step response of a laser cascaded with a modified ideal correction filter.

The pole-zero values were computer-optimized by the modified Newton-Raphson algorithm, de-
scribed in the previous section, which minimizes the sum of the squared errors of magnitude in decibels
and phase in degrees summed over the frequencies of interest. In early optimization runs, a comparison
was made between optimum weighting of magnitude and phase as defined by Equation (3.23) and equal
weighting of magnitude and phase. The optimization using equal weighting is shown in Figure 13, and
the optimization using optimum weighting is shown in Figure 14 for the same laser. As expected, opti-
mum weighting results in less error in the magnitude response and greater error in the phase response.
According to Figure 8, this is exactly the desired result to minimize the overall system error. Figure 15(a)
shows the calculated time-domain performance for the system equalized with equal weighting of magni-
tude and phase, and Figure 15(b) shows the same system equalized with optimum weighting. A useful
figure of merit for the time-domain response is derived by the following:

V -V.
F= max min (5.2)

V +V.max mnn

where Vmax -Vmi n is the peak-to-peak value of overshoot minus undershoot in a half-cycle, and Vmax + Vmi n

is a measure of the square-wave amplitude. The figure of merit for equal weighting of magnitude and phase
shown in Figure 15(a) is 0.129; optimum weighting, shown in Figure 15(b), results in a much better
value of 0.0755.
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Figure 13. Optimization using equal weighting of magnitude (decibels) and phase (degrees):
(a) magnitude response, (b) phase response, (c) magnitude error, and (d) phase error.

The pole and zero values resulting from the optimization were then used to synthesize a filter.
Several filter topologies were considered, including constant-resistance networks such as the bridged-T
and others. These networks have the advantage that they do not require a source impedance and can in
fact operate from an ideal voltage or current source as shown in Figure 16(a). This operation may be an
advantage in some situations where the additional voltage or current drop, which normally occurs across
the source impedance, can be eliminated. Constant resistance networks can also be cascaded. The equal-
izer transfer function can be separated into single pole-zero pairs that can each be realized by a separate
filter. The major disadvantage of constant resistance networks is their increased complexity; this was the
primary reason why these networks were not preferred for this application.

The filters that have been used previously [21 are lossy, and although simpler than constant resistance
networks, they use 33 percent more parts than a simple RC ladder driving-point impedance. Figures 16(b)
and 17 describe the filter configuration that was used for the equalizer synthesis. These networks produce the
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desired transfer characteristic when connected in series with a generator and load with 50-ohm impedances.
They are simple to construct, use a minimum of components, and provide accurate equalization from DC to
beyond I GHz.

The driving-point impedance is given by

k*H = - RL (5.3)EQ R G+RL+Z

where

HE = (S +Z1 )(s + Z)s+ Z3 )-.(..
EQ(s + p1 )(s + PAS )( +3..
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Figure 16. Filter topologies: (a) constant resistance and (b) series Z
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Figure 17. Series Z ladder.

Normalizing RL and RG to 1 ohm results in
1

kHEQ = 2 (5.5)

When Z = 0 at high frequencies, HEQ = 1, so k = 1/2 and Z is given by

Z = 2[(s + P,)(S +P2)(s + Pj).- (s + Z )(s+Z2 )(s+Z3) ...] (5.6)
(s+z 1)(S+z2j(S+z 3 )...

The element values are given by the alternating partial fraction expansion of Y= liZ. The element val-
ues are then renormalized to 50 ohms. The resulting filter structure is shown schematically in Figure 17.

Once the element values have been calculated, the response of the equalizer filter cascaded with the
laser, excited by a I-MHz square wave, is then computed using a 2048-point IFF!' to check the accuracy
of the equalizer design in the time domain.

Figure 18 compares the calculated and measured performance of a laser with two- three-, and four-pole
equalization. The calculated response used an ideal I-MHz square-wave stimulus, while the measurements
show the performance with a 500-kHz square wave. Generally good agreement exists between the calculated
and measured performance. However, the calculated performance shows a significant improvement between
the two- and three-pole equalization, and little, if any, improvement between the three- and four-pole
equalization. The measured performance, on the other hand, shows the biggest improvement between the
three- and four-pole equalization. There are several possible reasons for this result.

The measurements of the FM characteristics of the lasers have some uncertainty because of phase
and intensity noise in the laser output. Also, the FM characterization does not take into account the load
impedance of the laser, which is assumed to be a perfect 50-ohm load. The signal source is also assumed
to be a perfect 50-ohm generator. Finally, the sine-wave generator that is used for the FM measurements
is not the same as the high-speed switching modulator that is used for communication experiments.
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The optimization can only be as accurate as the data that is used as the optimization criteria. The series
Z filter is sensitive to source and load mismatch. Therefore, although great care has been taken to minimize
these potential errors, some uncertainty in the measurements remains. The components used to build the filter
are not ideal and may deviate from their nominal values at high frequencies. The element values in the physical
filters are somewhat constrained by available standard component values and may differ from the specified
value by a few percent. The component values for a three-pole filter that was optimized for one laser are shown
schematically in Figure 19(a). The actual component values are shown in Figure 19(b). A comparison
between the calculated response of the circuit in Figure 19(a) and the measured response of the circuit in
Figure 19(b) is shown in Table 2.

The equalizer filters were constructed on 1/16-in epoxy fiberglass printed circuit boards. The boards
were designed to accommodate single- through six-pole filters on the same board. The physical board
layout is shown in Figure 20. Equal path lengths were maintained through the various branches of the
filter to avoid phase cancellation effects at high frequencies. The high-frequency path is kept uncluttered,
passing through 50-ohm transmission lines and only one series capacitor. ATC surface mount capacitors
and Allen Bradley 1/8 W, 5% carbon composition resistors were used.
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Figure 19. Element values for a three-pole equalizer: (a) optimized element values and (b) filter design using
standard component values.
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TABLE 2

Equalizer Filter Response

Frequency Calculated Measured Difference

10 Hz -22.33 dB -22.54 dB -0.21 dB
100 Hz -22.33 dB -22.54 dB -0.21 dB

1000 Hz -22.33 dB -22.54 dB -0.21 dB
10000 Hz -22.15 dB - -

100 kHz -19.06 dB -19.35 dB -0.29 dB
1 MHz -13.28 dB -13.43 dB -0.15 dB

10 MHz - 3.93 dB - 3.71 dB +0.22 dB
100 MHz - 0.09 dB - 0.07 dB +0.20 dB
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Figure 20. Physical construction.
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5.2 SYSTEM PERFORMANCE

The performance of the equalized FSK communication system was measured for a transmitter laser
with two- and three-pole equalization. The two-pole performance is shown in Figure 21. Figure 21(a)
shows the calculated time-domain response with a 1-MHz square-wave excitation. Figure 21(b) shows an
oscilloscope measurement of the actual system with a I-MHz square wave. Excellent agreement exists
between the measured and calculated waveforms.

The measured response is shown in Figures 21(c) and (d) for 10- and 100-MHz square waves. At
these frequencies, the equalization is quite good even with two-pole equalization. The waveform distor-
tion that is seen at 1 MHz would'be expected to degrade the communication performance due to ISI
when a long string of identical symbols is transmitted. This is indeed the case, as shown in Figures 21(e)
and (f).

Figure 2 1(e) shows the bit error rate (BER) with a 215-1 pseudorandom sequence at 110 Mbit/sec.
Three curves are shown. The first curve is the theoretical performance of orthogonal, noncoherent, binary
FSK with a zero-linewidth source. The CSP lasers that were used in these experiments exhibited substan-
tial phase noise that broadened the heterodyned IF linewidth to approximately 16 MHz. This linewidth
noise also produces ISI, which causes the BER curve to deviate from the ideal curve at high signal-to-
noise ratios (SNRs).

The effects of linewidth noise are difficult to separate from poor equalization without knowing the
effect of linewidth noise alone on BER performance. The second curve in Figure 21(e), generated by a
computer simulation of an FSK system with 16 MHz of linewidth noise and perfect equalization, demon-
strates this effect. The third curve is the measured BER for two-pole equalization. Comparing the simulation
and measured data shows that the system performance does degrade at high SNRs due to equalization
errors. Further evidence is shown in Figure 21(0, which displays the measured BER performance for
alternating ones and zeros at 110 Mbits/sec. The measured data and the simulation show good agreement
at high SNRs in this case because the sequence of alternating ones and zeros is free of low-frequency
components that are not adequately equalized.

Figure 22 shows the same laser with a three-pole equalizer. Again, there is good agreement between
the calculated waveform in Figure 22(a) and the measured waveform in Figure 22(b). The absence of the
initial spike seen in Figure 22(a) is likely because of low-pass parasitics in the system and measuring
equipment that have filtered out some of the high-frequency energy.

The BER curves in Figures 22(e) and (f) show excellent agreement with the simulation for both a
215_ I pseudorandom sequence and alternating ones and zeros. This agreement indicates that the three-
pole equalization is accurate enough that any errors due to equalization are well below the effects of laser
linewidth noise. In the future as laser linewidth noise is reduced by the production of better laser diodes,
equalization will become more critical and higher order networks may become necessary.

Figure 23 shows the effects of equalization on the time-domain performance of a pseudorandom
sequence. Figure 23(a) shows the ASK waveform at the output of the modulator that drives the laser
transmitter. The demodulated FM at the laser output is shown in Figure 23(b) for no equalization, There
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with alternating ones and zeros.
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166318-27

UNEQUALIZED EQUALIZED

0 TO 1 GHz 0 TO 1 GHz

Figure 24. Laser spectra: (a) unequalized and (b) equalized.

are no distinctly spaced tones because of the FM distortion caused by the unequalized laser. The unequalized
system is useless for standard FSK communication. Figure 23(c) shows the system with equalization.
Now two distinct frequency tones can be demodulated with a low probability of error.

Figure 24 shows the frequency spectra of the heterodyned, FSK-modulated laser signal with a
2 x orthogonal tone spacing at 110 Mbits/sec. No distinct tones are present without equalization.
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6. CONCLUSION

An approach to the design of passive equalization networks for wideband communication systems
has been described. Several useful design tools have been developed that allow an estimate of the
precision of equalization required for a specified performance in the time domain. An optimization
strategy has been presented that makes use of both magnitude and phase information in the optimum way
to minimize the overall error in a system transfer function. This technique has been used to design
equalization networks for an FSK optical communication network with equalization requirements from
DC to beyond 1 GHz. This approach has been shown to produce high-quality system equalization with
low-order passive RC networks.

Much of what has been presented was specifically developed for the optical communication system
problem, but the techniques and tools have broad application in such diverse areas as image rejection
mixer design, adaptive antenna nulling, and other problems where two complex vectors are to be com-
bined in an optimum way.
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APPENDIX A

LASER EQUALIZATION PROCEDURES

The laser equalization methods follow these procedures.

(1) The FM transfer function of the laser is measured using a network analyzer that measures the
difference in magnitude and phase of two voltages [3]. The network analyzer generates one of the signals
internally using a frequency synthesizer. This signal is added electrically to the DC bias of the laser,
causing the output of the laser to be frequency modulated at a rate determined by the input frequency.
The laser output is detected using a Michelson interferometer that is set up as a delay-line discriminator.
The Michelson interferometer produces a voltage output that is proportional to the sine of the phase
difference between direct and delayed versions of the output of the laser. For small frequency deviations,
the output varies approximately linearly with the frequency of the laser. The network analyzer compares
the input signal with the output of the Michelson interferometer. The laser FM response is measured at
99 frequencies that are logarithmically spaced between 10 Hz and 1300 MHz. The instruments are con-
trolled by an HP9836 computer that performs a calibration and records the data on a 5.25-in floppy disk.

(2) The data on the 5.25-in floppy is then transferred to the Lincoln Laboratory mainframe computer where
the data is converted into a MARTHA I network. At this point, the original measured data can be recovered
by printing or plotting the magnitude and phase of S21 of the network using the same frequencies at which
the data was taken. MARTHA will, in addition, interpolate or extrapolate the original data for any other
frequencies of interest. This capability becomes very useful later on to perform IFFTs on the measured data to
construct the time-domain response of the laser cascaded onto an appropriate equalization network.

(3) A prototype equalizer response is constructed from the data produced by the laser network. (See Sec-
tion 5.) The data is manually altered so that a minimum loss, minimum phase network can be constructed that
will approximate the magnitude and phase function needed to equalize the laser to a flat response. The
magnitude response of the filter prototype is created from the magnitude of the measured FM characteristic in
decibels by multiplying by - I and normalizing to 0 dB at the peak of the inverted response. If the laser shows
a rise in the response at very high frequencies, the prototype response is forced to 0 dB at frequencies above
the peak. Also, if the laser shows a sloping response above 100 MHz, the response is flattened above
approximately 100 MHz.

The phase response of the prototype is subtracted from 1800 to produce a minimum-phase-type
response that tends to zero at DC and high frequencies. The phase response of the prototype is forced to
zero at frequencies above approximately 200 MHz by the function FIXPHASE. The function FIXPHASE
uses a left argument that contains the prototype filter characteristic and a right argument that is the index
value of the frequency chosen for fo in Equation (5.1). The result of FIXPHASE is a new filter charac-
teristic where the phase values at frequencies above fo have been replaced with the values computed by

Paul Penfield, Jr., MARTHA, Massachusetts Institute of Technology (1971).
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Equation (5.1). This new phase characteristic is then plotted along with the original characteristic. The
right argument of FIXPHASE is iterated up or down to produce the smoothest transition from the
original data to the new values. For example, EQL123B = EQL123 FIXPHASE 40.

(4) The prototype equalizer description consists of a three-dimensional array in the form of a MARTHA
function of frequency (FOF). The first, second, and third columns show the magnitude in decibels, phase
in degrees, and frequency in hertz, respectively. Usually, the number of rows is 63, which corresponds to
the upper 63 frequencies used in the original measurement of the laser. This description is used as the
variable PROTO in the APL function EQUALIZE, which in turn uses the APL function NEWT2S21,
which is a Newton-Raphson optimization algorithm. NEWT2S21 uses the functions MAGNITUDEDB,
PHA, and RMSARRAY. A listing of these functions is found in Appendix B.

(5) The initial guesses of the pole and zero locations are in the variable PZ, which is a vector with the
zero values followed by the pole values. The optimization algorithm is usually good enough that the
values used for the last optimization can generally be used as the starting point for a new design, unless
the order of the filter is changed. Because PZ is a global variable, these values are normally saved after
each optimization. This process eliminates the need to use a Bode plot to determine the initial guesses
unless the order of the new filter is different from the order of the previous filter. The optimization can
run into trouble if poor initial values are used in PZ. Two or more zeros or poles with identical values
cause the error matrix to have no inverse. If instability is observed in the optimization, then new initial
guesses should be derived using a Bode plot. Using too many poles and zeros can result in poor or even
unstable optimization. Alternating pole and zero locations is required if the resulting function is to be
realized as an RC passive network. Generally, four zeros and four poles have been found to result in the
best equalization obtainable, with the accuracy that is currently available in the laser measurements.

(6) EQUALIZE requires PROTO as the left argument and PZ as the right argument. EQUALIZE prints
a running account of the optimization process by scrolling information in the dialog area of the screen,
which consists of a normalized error value followed by the zero and pole locations for each iteration of
the optimization. The stability and accuracy of the optimization can be observed by watching that the
error value does not oscillate between wildly varying values and that the pole and zero values are
converging on stable values. When all of the pole and zero values are within 0.01 percent of the opti-
mum, the optimization ceases; plots of the magnitude response, magnitude error, phase response, and
phase error are drawn on the screen; the final values for the poles and zeros are printed in the dialog area.
These values are also stored in the global variable PZ, which can be used in other functions to synthesize
the actual equalization network. For example, RESULT = EQL123 EQUALIZE PZ. RESULT will con-
tain the magnitude and phase of the optimized transfer function.

(7) The APL function BUILDSERIESZ uses PZ as the right argument and generates the element values
for the structure shown in Figure 17. BUILDSERIESZ uses the functions EXPANDPOLY and
CFRACTION. EXPANDPOLY calculates the coefficients of the polynomial whose real roots are the
elements of a vector that is used as the right argument. CFRACTION performs the alternating continuous
fraction expansion of the polynomial whose coefficients are the left argument, divided by the polynomial
whose coefficients are the right argument. The element values calculated by BUILDSERIESZ are nor-
malized to I ohm.
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(8) A MARTHA network is created with the element values normalized to 50 ohms. This network can
then be cascaded with the original laser network, and MARTHA can be used to analyze the total response in
the frequency domain. The time-domain response of the system can be calculated using the APL function
AMPLVST. AMPLVST uses the MARTHA network description as the left argument, which has been placed
between single quotes, i.e., 'EQ123 WC LASER123'. The right argument is a vector that describes the input
waveform. The standard test is a I-MHz square wave described by the vector 5E-7 1 90 0 5E-7 -1 90 0 2048.
AMPLVST produces a FOF that can be plotted using the standard plot functions in MARTHA. The function
REAL can be used to plot the real part of the AMPLVST output. For example, PLOT REAL 'EQ123 WC
LASER 123' AMPLVST 5E-7 1 90 0 5E-7 -1 90 0 2048.
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APPENDIX B

API, COMPUT]ER FUNCTIONS

VEQUALIZE(OJV
(0] Z-PROTO, EQUALIZE PZ ;X&LABEL;YALABEL;TITLEh ;ESC
(1] 0 TM-1
[2] ESC.-OAV(28]
(3] 0-ESC,'002'
(4] O-ESC,'OuO'
(5] 0-ESC,1Oul'
[6] 0-ESC,OAV(13]
(7] OPW-80
(8] Z-PROTO NEWT2S21 PZ
(9] PICZ 1
[10] XALABEL'-IFREQUENCY HZ'
[11] YALABEL-OMAGNITUDE DB'
(12] TITLEA-'NETWORK FREQUENCY RESPONSE'
(13] XLOGPLOT PROTO[1;;l]AND Z(:1]VS PROTOf1;;3]
(14] PICZ 2
(15] YALABEL.-'PHASE DEG'
(16] XLOGPLOT PROTO(1;;2]AND ZC;2]VS PROTO(1;;3]
[17] PICZ 3
(18] Y6LABEL-'PHASE ERROR DEG'
(19] XLOGPLOT(Z( ;2]-PROTO[1; ;2] )VS PROTO(1; ;3]
(20] PICZ 4
(21] Y6LABEL-'MAGNITUDE ERROR DB'
[22] XLOGPLOT(Z( ;1]-PROTO(1;;1])VS PROTO(1;;3]
(23] O-'ZEROS ', 11 -5 *((ppz)+*2)tpz
(24] O-'POLES ',(11 -5 *(-(ppz)+.2)tpZ),ESC,'''A0'
(25] 0 TM.-0

VCFRACTION(O]V
(0] C.-A CFRACTION B:NUNER;DENOM;D;CHAR;N;M;C1
(1] C.-t.
[2] CHAR- 5 6 p'+(SxS)+S S SxS
(3] START:
(4] NUMER.-A
(5] DENOH.-B
(6] -REDUCExtB[1]0O
(7] C1.-A(1]4-B[1]
(8] C-C,C1
[9] N4-pA
(10] M.-PB
(11] 0-(*Cl),' ',,CHAR[(3+N-M);]
(12] D-CIXDENOM
(13] D-D,Oxt(N-M)
(14] A-DENOM
(15] B-NUNER-D
(16] REDUCE:
(17] B.-14B
(18] -4STARTxt(pBiO)
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(0) B-NET AMPLVST A;AT;N1 ;N2 ;AF;FR;A1;A2;SIG;F;FRM;DC1;DC2
(1) DC2.-DCF-0
[2) IN:-*(9=p,A)/START
[3) -DCPRAMxt11=p,A
(4) 0-B.-'ENTER FIRST SIGNAL PARAMETERS AS T1,A1,DEG1,F1,DC1:

[6) MI-B-ENTER SECOND SIGNAL PARAMETERS AS T2,A2,DEG2,F2,DC2:'

[8) M~-B-ENTER NO. OF POINTS:

(10) -'IN
(11] DCPRAM:DC1.-A[5)
(12] DC2.-A[10]
[13] A4-A(l 2 3 4 6 7 8 9 11)
[14] AZERO TAME TO FREE WORKSPACE
(15] START:TAME-tO
(16] ACHANGE NO. OF POINTS TO A PWR OF 2
(17) A(9]4-2*r (*A(9]) )-2
[18] ASAVE INPUT 'A' IN BACKGROUND VAR
(19] AA'-A
(20] ACOMPUTE TIME AND FREQ PARAMETERS
(21] aT4-(A[1]+A[5])+A(9]
(22] N2'-L0. 54A[9JxA(5]-A(1 ]+A[5]
[23) N1.-A[9J-N2
(24] &F.-+A(1]+A[5]
(253 APCOPY IN MARTHA EFNS
(26] 1 COPYAWS 'MARTHADH'
[27) ADEFINE MEASUREMENT FREQUENCIES
(28] F-AFxlE1N,tA(9]+*2
(29) ACOMPUTE NETWORK RESPONSE
(30] FR-((pF),3)pVG OF*,NET
[31] AZERO OUT MARTHA HEADER (hd)
(32] hd.-tO
(33] AMAKE INTO A COMPLEX VECTOR AND ALIGN WITH SIG FFT
(34) ATHAT IS FIRST ELEMENT IS ZERO FREQ
(35] FRM4-(1 0)1(1l 0)4eFR
(36) FRN(; 2 3].--FRM[; 2 3]
(371 FR-FR,(1]FRM
(38] FR.-OFRC; 1 2]
(39] ACOMPUTE TEST SIGNAL PHASE IN RADIANS
(40] A14-(OA( 3 ]+180)+O2xA(4]xaTx1l+tN1
(41) A24-(OA(7])+180)+02xA(8]x-aTx1+N2-tN2
(42] ACOMPUTE COMPLEX TEST SIGNAL
(43) SIG-(2,A(9])p((A(2)X1OA1)+DCl),((A(6]X1OA2)+DC2),A[9]pO
(44) ACOMPUTE COMPLEX TIME RESPONSE
[45] B.-IFFT FR XTIME FFT SIG
[46) APUT IN TEKPLOT FORMAT, COL 1,2=RESPONSE, COL3=SIG, COL4=TIME
(47) ARESPONSE=RE(B) ,IM(B); SIG=RE(SIG)

(49] APUT B IN VAR TAME FOR FUTURE USE IF REQUIRED
f 50] TAME'-B



VNEWT2S21[O]V
(0) H-FT NEWT2S21 PZ;MB;AB;EI;EO;E2;E3;E4;J;ERROR;N;I;P;E4;EA;JM;JA;DN
[1] N4-pPZ
[2] ERROR.-tO
(3] MB-FTC;;3]HAGNITUDEDB PZ
[4] AB'-FTC;;3]PHA PZ
[5] H-0(2,(pFT)[2))pMB,AB
[6) EI.-FT RMSARRAY H
[7] E0-(+/EI)+*pEI
[8] 0'- 12 -5 *E0,PZ
[9] LOOP:P.-PZ
[10] K(-2
(11) EM'-(FT[1; ;1]-,HB)xO.978x40+e10O
[12] EM-EMO.X( (N+'2)p-1) ,(N+*2)pl
[13] EA'-(FT[1; ;2]-,AB)xO.022x2xl80-oI
[14] EA-EAo.x((N+2)pl),(N+2)p1I
[15] DN-((O2xFT[1; ;31)*2)o.+P*2
[16] JM.-( (( (pFT) [2])pl)o.xP)+*DN
[17] JA.-((o2xFT[1; ;3])o.X(Npl) )-DN
(18] ERROR.-(EMxJM)+(EAxJA)
[19] ERROR.-EIMERR0R
[20] STEP:K'-K+.2
[21] P-P-KxERROR
(22] MB;--FT[;;3]MAGNITUDEDB P
[23] AB.-FT[;;3]PHA P
[24] H4-0(2, (pFT) (2))pMB,AB
[25] E4'-FT RMSARRAY H
[26] E3'-(+/E4)-*pE4
[27] 0'- 12 -5 fE3.,P
[28] -CONTXlE3 5EO
[29] P-P+KXERROR
[30] -*STEP
[31) CONT:-.QUITxLx/( I(PZ-P)+-PZ)<(Np1E-4)
[?2) EO-E3
[33] PZ'-P
(34] EI.-E4
[35] ERROR'-tO
(36] -LOOP
[37] QUIT:MB.-FT(;;3)MAGNITUDEDB PZ
(38] AB'-FT[;;3]PHA PZ
[39] H-0(2,(pFT)[21)pMB,AB
(40] pz.-PZ

VPHA[O]V
(0] Z-PH PHA SN;Z1;Z2
(1] N-pSN
(2] Z1-(N+*2)tSN
(3] Z2-(-N+.2)tSN
[4] Z.-+/-3002XPH0.X+*Z1
[5) Z-Z-+p3002xPHo.X-Z2
(6] Z'-Zxl8O+*1t
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VRHSARRAY[O]V
(0] Z-EXACT RMSARRAY TEST
I1] Z*.0.978x((( ,EXACT[1;;1])-TEST(;1])*2)
[2] Z-Z+0.022x((( ,EXACT[1;;2])-TEST[;2])*2)

VBUILDSERIESZ[0] v
(0] Z-BUILDSERIESZ PZ;A;B;N
(1] N'-pPZ
(2] A+-EXPANDP0LY (-N-2)tPZ
[3] B-EXPANDPOLY(N+2) tPZ
(4] A.-2x(A-B)
(5] Z.-A CFRACTION B

VEXPANDPOLY (DIV
[0] Z-EXPANDPOLY S;N;I
I1] Ni-pS
(2] 1.-i
(3] Z.-1,S(1]
[4] LOOP:I.-I+1
(5] -.OxtI>N
[6] Z-(1,S[I] )o.xZ
[7] Z-Z,(2]2p0
[8] Z4-(0 1)OZ
[9] Z4-+IZ
[10] -LOOP

VFIXPHASE[ D]V
(0] Z.-FT FIXPHASE FO;Fl
[1] F1.-FO-4
(2] F1.-Fl+t(63-F1)
[3] FT[1;Fl;2]4-45-180x(-3o(FT[1;F1;3] FT[1;FO;3J) ) 02
(4] Z.-FT

VMAGNITUDEDB[0]v
(0] Z-FR NAGNITUDEDB PZ
I1] N-pPZ
(2] FR-FR+*100000
(3] PZ.-PZ+'100000
(4] PZ.-PZ*2
(5] Z.-X/((o2XFR)*2)o.+(N+'2)tPZ
[6] Z4-Z*x/( (o2xFR)*2)o.+(-N.2) PZ
(7] Z-1OxooeZ
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